Effect of moisture types on fuel flowability

<u>Vesna Barišić</u>, Patrycja Slotte, Paweł Leśniewski, Kari Peltola, Marcin Klajny Sumitomo SHI FW, Research and Development Department

4

Sumitomo Sumitomo

Ģ

Flex Flores RFCS project - a step towards a more sustainable energy generation Dec 9, 2020 10:00 AM - 12:00 PM CET

Presentation outline

- Flowability and moisture types
 - Moisture definitions
 - Standards to determine moisture
 - Properties affecting coal flowability
- Experimental study in Flex Flores project
 - Coals of different rank
 - Laboratory equipment and method
 - Results
- Conclusions

Flowability of coal

- Flowability = transportability
 - Handling and transport of fuel depends on its capacity to be moved

Direct impact on availability and reliable operation of a power plant

Moisture definitions

- Moisture (M), especially <u>surface moisture</u>, is commonly recognized as a key factor affecting handling and transportability of a coal
- Terminology used to specify moisture types:
 - total, as-received, equilibrium, inherent, free, air-dry loss, residual, pore, surface...
- Reviewed standards:
 - ISO: determination 589 and 5068
 - ASTM: terminology D121, D2013; and determination D3302, D3173, D1412

ISO standards for moisture determination in coals

ISO 589	ISO 5068	
Total moisture in hard coals	Total moisture in brown coals & lignites	
 <u>One-stage method</u>: Crushed sample is dried in either nitrogen, or air at 105-110 °C 	 <u>One-stage method</u>: Crushed sample is dried in nitrogen at 105- 110 °C 	
 Total M is calculated from the loss in mass <u>Two-stage method</u>: sample is dried in air at ambient T or at 30-40 °C = free M crushed air-dried sample is dried in nitrogen at 105-110 °C = residual M Total M = free M + residual M 	 Total M is calculated from the loss in mass <u>Two-stage method</u>: sample is dried in air at ambient T or at 30-40 °C = air-dry loss M crushed air-dried sample is dried in nitrogen at 105-110 °C = residual M Total M = air-dry loss M + residual M 	

*each standard address its suitability limitations depending weather coals are susceptible to oxidation ! Important to note that standards define max particle size of sample in each step

Free moisture = Air- dry loss moisture; surface moisture not mentined

as by ISO 589 and ISO 5068

ASTM standards for moisture determination in coal and coke

ASTM D121 Terminology – Coal and Coke	ASTM D3302 Total moisture in coal and coke	
 •Total M = inherent M + surface M •inherent M = bed M ≈ pore M •surface M = excess M = extraneous M = free M •Standardized methods for determination of inherent M and surface M do not exist > approximation •Equilibrium M determined according to D1412 •air-dry loss, the loss in mass, expressed resulting from each air-drying stage •residual M – "Residual moisture is neither a standard state nor a characteristic property of a coal. Air drying only removes water that can evaporate at or near ambient laboratory conditions leaving in the coal water that will not evaporate at those conditions" 	 Two-stage method: 1. Drying sample in air at ambient T, or in oven at 10- 15°C, ≤10°C for subbituminous and lignite = air-dry loss M 2. crushed air-dried sample is dried in nitrogen at 105- 110 °C = residual M Total moisture = air-dry loss + residual moisture "The repeatability and reproducibility limits given in the standard apply only to coals without free (surface) moisture in the gross sample before preparation of 2.36- mm sieve-size subsamples" 	! Important to r max particle si

! Important to note that standards define max particle size of sample in each step

Free M = Surface M \neq Air- dry loss M

Inherent M ≠ Residual M

Equilibrium M (ASTM D1412) = Inherent M, high rank coals

Equilibrium moisture (ASTM D1412) < Inherent M, low rank coals

Surface M ≈ total M (ASTM D3302) – equilibrium M (ASTM D1412)

Effect of moisture on coal flowability, literature

- Moisture effect on flowability is interconnected with other factors, such as:
 - Particle size distribution
 - Mineral composition, especially clay minerals
 - Consolidation pressure and time
 - Temperature
- Wawrzynkiewiicz, W., 2003. For two studied coals:
 - Almost no effect of moisture when particles > 3mm
 - Highest moisture effect for particles <0.5 mm
 - Moisture shows bell-shaped effect on transportability; inflection point is at ~25% moisture

Coal proximate analyses

*Moisture determined according ISO standards: Total M = Free M + Residual M

- Moisture increases in following order: bituminous < subbituminous <lignite, however, share of free moisture does not always follow coal rank order
- Moisture, free and total, is higher in particle size fraction < 1mm

Particle size distribution of tested coals

Particle size distribution was varing in broad range especailly for AR coals

Laboratory equipment and method

- Experimental equipment designed at Sumitomo SHI FW (SFW)
 - Comprises stainless steel pipe, so-called slope pipe, with adjustable:
 - Angle up to 60°,
 - Temperature up to 400 °C.
- For each coal type, several moisture contents were tested:
 - a) as received (AR)
 - b) air-dried (AD)
 - c) 2-4 water-doped samples in which moisture is higher than in a).
- Procedures for flowability test:
 - I. Slope test Method #1 : the angle when the flow starts, and the angle when the full flow occurs
 - II. Drop test Method #2: share of accumulated fuel fraction @slope angle

Flowability of coal with as received (AR) moisture and after air drying (AD), Method #2

- Total moisture in analyzed coals (slide 7) is higher compared to coals used in experiments, with exception of Bit-1. Highest loss of moisture was in Lig, DE
- Good flowability was measured for all AR and AD samples, regardless of different moisture contents
- Flowability worsens with increase of moisture above AR

Method #1 – effect of moisture on start and full flow

In this study threshold moisture content was around 15-27%, for Sub and Bit coals, ~55% for Lig

Coal specific property

💽 Sumitomo

Improved flowability with increase in slope

beyond critical moisture content

Experimental study

Method #2 – share of accumulated fuel fraction @slope angle

The critical moisture content is coal specific, however, does not seem to be connected to free moisture (ISO 589)

Take away

- Terminology used for moisture differs among standards, therefore, it is advisable to specify the standard when referring to moisture types
- Experimental equipment designed at SFW proves to be valuable research tool to assess flowability properties of coals
 - Coal flowability worsens when moisture exceeds total, "as received" value of that coal
 - Effect of moisture on coal flowability can be described with bell-shaped curve, i.e. flowability is improved at moisture levels beyond critical moisture content
 - Critical moisture content, i.e. moisture content for which coal shows worse flowability, seems to be coal specific but doesn't seem to be a function of air-dry loss, or free moisture as defined by ISO standards
- Possible continuation of research at SFW:
 - Quantifying the effect PSD and temperature on flowability
 - Model development for prediction of coal flowability based on coal properties

THANK YOU

